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Perturbative check on the Casimir energies of nondispersive
dielectric spheres

G Barton
Centre for Theoretical Physics, University of Sussex, Brighton BN1 9QH, UK

Received 15 October 1998

Abstract. For an optically dilute solid sphere of radiusa and dielectric constantε independent
of frequency, the Casimir energy1 is evaluated to second order inγ ≡ (1− 1/ε), subject to an
exponential cut-off 1/λ on wavenumbers, using only standard perturbation theory and elementary
mathematics. It is hoped that this can serve to elucidate other far more elaborate methods that
aim to determine1 exactly by summing zero-point energies. For the electromagnetic field, the
perturbative result reads

1(em) = −γ 3

2π2

V

λ4
+ γ 2

{
− 3

128π2

V

λ4
+

7

360π3

S

λ3
− 1

20π2

1

λ
+

23

1536π

1

a

}
+ · · ·

with V the volume andS the surface area. The term of orderγ 2 is related in a simple way to
the Casimir–Polder (retarded) potential between polarizable bodies. This relation also yields some
insight into the net pressure on a thin spherical shell.

1. Introduction

Consider the self-energy1 acquired, through its coupling to the quantized transverse Maxwell
field, by a solid sphere (a ball) of radiusa, having dielectric constantε = n2 independent
of frequency. This tends to be approached through the total zero-point energy of the field in
presence of the ball, requiring considerable mathematical sophistication. In contrast, we shall
show that, for optically dilute media, ordinary perturbation theory suffices to determine1 to
second order as

1 = γ11 + γ 212 + · · · , 0< γ ≡ (1− 1/ε)� 1 (1.1)

using wholly elementary mathematics, provided one adopts an explicit exponential cut-off
1/λ on wavenumbers. This expansion is proposed not as a step towards dealing with realistic
materials, but purely as an aid towards charting other attempts on the same preliminary and
somewhat artificial problem, which often discard divergences as it were behind the scene
and sight unseen. We hope that the simplicity of the perturbative expressions might elicit
some clarification/intercomparison of the various methods regularizing through analytic or
dimensional (zeta-function) continuation: more advanced results aiming at exactitude can be
checked by expanding them as in (1.1) and comparing coefficients.

It must be stressed that the problem without a cut-off is ill-defined, because1 is divergent;
and that no physical interpretation of cut-offs as simple as ours can be wholly compelling,
because (a) real materials are dispersive, i.e.ε depends on the frequencyω, and tends to
unity asω rises well above any frequency characteristic of the material; and (b) dispersion is
always due to some mechanical degrees of freedom (additional to those of the field), whose
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contributions to1 cannot be mimicked reliably by starting with constantε and then introducing
cut-offsa posterioriinto otherwise divergent integrals over frequency or wavenumber. Hence
our programme as outlined above is modest not from virtue but from necessity: we study
the constant-ε sphere with a cut-off in order to illuminate methods rather than to solve a real
physical problem. Nevertheless, section 5 will hazard a possibly overoptimistic conjecture
about the significance of the cut-off-independent parts of our results.

For simplicity, the body of this paper considers only a massless scalar field; the
electromagnetic field is relegated to an appendix. Apart from purely numerical coefficients
the results are the same for both. Section 2 recalls the basics of quantizing the field in the
presence of a medium. Section 3 merely recalls the exact energy densitiesu in unbounded
media, interesting on the widespread opinion (true for11 but false for12) that the component
of1 proportional to the volumeV = 4πa3/3 should be simplyV (u−uvac), whereuvac is the
zero-point energy densityin vacuo. Remarkably, both the sign and the magnitude of(u−uvac)
depend on whether one cuts off frequencies or wavenumbers.

Beyond this we consider only dilute media subject to (1.1). Sections 4.1 and 4.2 evaluate
11 and12, respectively. One needs only plane waves: neither Bessel functions nor zeta
functions ever appear. Section 5 makes some final comments:conclusionsregarding such a
largely technical exercise are best drawn by the reader.

Appendix A evaluates the one nontrivial integral we encounter, and appendix B adapts
to electromagnetism. Appendix C linksγ 212 to the familiar Casimir–Polder potential
between molecules (quā-neutral polarizable objects). By exploiting this link appendix D
then determines the net outward pressure on an infinitesimally thin spherical shell.

2. Quantizing the field

The Lagrangean density for our scalar fieldφ, the conjugate momentum5, and the Hamiltonian
density read†

L = 1
2

{
ε(r)φ̇2 − (∇φ)2}, 5 = ε(r)φ̇, ε(r) ≡ 2(r − a) + ε2(a − r)

H = 1
2

{
52/ε(r) +

(∇φ)2} = H0 +1H, H0 = 1
2

{
52 +

(∇φ)2}
where2 is the Heaviside step function. Without the ball one would haveε(r) = 1 everywhere.
Accordingly, the interaction Hamiltonian is

1H = − 1
2γ

∫
r<a

d3r 52(r). (2.1)

We shall need the normal-mode expansion for5 in vacuoand in the absence of the ball:

5(r) = −i
∫

d3k
k1/2

4π3/2
exp(ik · r)ak + H.c. (2.2)

where theak are the usual annihilation operators, such that
[
ak, a

+
k′
] = δ(k − k′), and H.c.

denotes Hermitean conjugate.

3. Zero-point energy densities in unbounded space

For plane waves in an unbounded medium one has

ω = k/n, n ≡ √ε;
† We use natural units, ¯h = 1= c, and rationalized Gaussian units for the Maxwell field. We work in the Schrödinger
picture.
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choosing† an exponential cut-off the energy density reads[
uk

uω

]
=
∫

d3k

(2π)3
ω

2
exp

(
−
[
λkk

λωω

])
(3.1)

where the subscriptsk (orω) indicate cut-offs applied to wavenumber (or frequency).In vacuo
there is no ambiguity, and we writeuvac, andλ without a subscript. We are interested only
in cases where the appropriateλ is much smaller than any other pertinent length: here this
requires onlyλ� a. Terms that vanish asλ→ 0 are dropped. Thisno-cut-off limitis always
to be taken at the end of the calculation.

Evaluating (3.1) one finds

(uvac, uk, uω) = (3/2π2)
(
1/λ4, 1/nλ4

k, n
3/λ4

ω

)
.

In particular, if one chooses a wavenumber cut-off and setsλk = λ, then

uk − uvac = −(1− 1/n)
(
3/2π2λ4

) = −( 1
2γ + 1

8γ
2 + · · · )(3/2π2λ4

)
< 0 (3.2)

and the radiative self-energy tightens the binding of the material (at least insofar as such cut-
off-dependent terms echo any real physics). This choice is made for instance by Schwinger
(1993). By contrast, if one chooses a frequency cut-off‡ and setsλω = λ, then

uω − uvac = (n3− 1)
(
3/2π2λ4

) = ( 3
2γ + 15

8 γ
2 + · · · )(3/2π2λ4

)
> 0 (3.3)

and the radiative self-energy loosens the binding of the material.
The expansions in powers ofγ are pertinent to optically dilute media that are our main

concern: bear in mind for instance that

ε = n2 = 1/(1− γ ) ⇒ 1− 1/n = 1−
√

1− γ .

4. Perturbation theory

The unperturbed (zero-order) Hamiltonian is that for the free field in empty unbounded space,
i.e.H0 =

∫
d3r H0. Its eigenstates are the familiar plane-wave photon states.

The perturbation is1H , given by (2.1). To calculate its matrix elements between the zero-
order states one needs only the expansion (2.2). We adopt a wavenumber cut-off exp(−λk),
which in such a perturbative approach seems the least implausible choice. Clearly,λ cannot
well be smaller than the important absorption wavelengths of the material, which otherwise
our nondispersive model ignores altogether. (Equally obvious though usually less restrictive
is the condition thatλ must be well above the intermolecular or lattice spacing, since waves
shorter than this do not see the medium as continuous.)

† The exponential cut-off is adopted for convenience: other choices presumably lead to similar conclusions, subject
of course to the caution in section 1 regarding dispersion. (However, it would be disingenuous to try and hide that
explicit calculations are incomparably easier with the exponential than with any other cut-off.) Alternatives include
the conditionk < 1/λ; this, like ours, is effectively a cut-off imposed on Fock space. More plausibly perhaps one
might require the refractive indexn = k/ω to reduce to unity at highk or highω. Such cut-offs vian are discussed
instructively by Carlsonet al (1997).
‡ This option when imposed through a refractive index is criticized by Carlsonet al(1997), though it is not immediately
clear whether their strictures apply to our more primitive variant.
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4.1. First-order energy shift

The shiftγ11 is simply the expectation value of the perturbation in the zero-order state, i.e.
the unperturbed-vacuum expectation value of1H :

γ11 = 〈0|1H |0〉 = − 1
2γ

∫
r<a

d3r 〈0|52|0〉

= − 1
2γ

∫
d3k

k

16π3
exp(−λk)V = − 3γ

4π2λ4
V (4.1)

where the third step relies on the fact that the zero-order expression〈0|52|0〉 is independent
of position. Notice thatγ11 is justV multiplied byuk − uvac from (3.2) taken to first order
in γ . Being proportional to volume for all shapes,γ11 is irrelevant to forces tending merely
to shift or even to distort bodies without expanding them.

4.2. Second-order energy shift

Since1H links the vacuum only to two-photon states|k,k′〉, the second-order shift is

γ 212 = − 1
2

∫ ∫
d3k d3k′

|〈k,k′|1H |0〉|2
k + k′

exp
[−λ(k + k′)

]
.

The prefactor12 compensates for double-counting the states|k,k′〉 = |k′,k〉.
Given our exponential cut-off,12 can be evaluated quite easily. First one writes

1/(k + k′) = ∫∞0 dµ exp
[−µ(k + k′)

]
and setsξ ≡ (µ + λ), which leads to

exp
[−λ(k + k′)

]
k + k′

=
∫ ∞
λ

dξ exp
[−ξ(k + k′)

]
.

Second, one uses (2.2) to write out〈k,k′|1H |0〉 and its complex conjugate as integrals∫
d3r . . . and

∫
d3r ′ . . . , respectively. This in effect factors the integrand, and allows us

to reverse the order of the integrations over positions and wavevectors:

12 = − 1

2(16π3)2

∫
r<a

∫
r ′<a

d3r d3r ′
∫ ∞
λ

dξ

{∫
d3k k exp

[
ik · (r − r′)− ξk]}2

. (4.2)

Note that
∫

d3k . . . is real; and that Bose–Einstein factors of 2 from each matrix element have
cancelled the factors12 of 1H .

Third, one introduces the coordinates

R ≡ r + r′ ρ ≡ r − r′ |∂(r, r′)/∂(R,ρ)| = 1
8 (4.3)

and the scaled auxiliary variable

x ≡ ξ/ρ. (4.4)

Then ∫
d3k k exp

[
ik · ρ− ξk] = 8π

ρ4

(
3x2 − 1

)
(x2 + 1)3

(4.5)

leads to

12 = − 1
2

∫
r<a

∫
r ′<a

d3r d3r ′

ρ7

1

4π4

∫ ∞
λ/ρ

dx G(x), G(x) ≡
(
3x2 − 1

)2
(x2 + 1)6

. (4.6)

(The obvious interpretation ofγ 212 in terms of a local potential is spelled out in appendix C.)
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Fourth, one changes the integration variables toρ,R, performs
∫

d3R . . . , and rescales
from ρ to

σ ≡ ρ/2a.
It is only here that not every step may be obvious, and the calculation is done in appendix A.
The crucial result† is∫
r<a

∫
r ′<a

d3r d3r ′f (ρ) = 1
327π2a6

∫ 1

0
dσσ 2

{
1− 1

23σ + 1
2σ

3
}
f (ρ = 2aσ) (4.7)

with f any function ofρ = |ρ| alone. Applied to (4.6) this yields

12 = − 1

24π2a

∫ 1

0
dσ

{
1

σ 5
− 3

2σ 4
+

1

2σ 2

}∫ ∞
λ/2aσ

dx G(x).

Finally, on inspecting the integration region in the(σ, x) plane, one can reverse the order of
integrations and perform

∫
dσ . . . first:

12 = − 1

24π2a

∫ ∞
λ/2a

dx G(x)
∫ 1

λ/2ax
dσ

{
1

σ 5
− 3

2σ 4
+

1

2σ 2

}
= 1

24π2a

∫ ∞
λ/2a

dx G(x)

{
−4

(
ax

λ

)4

+ 4

(
ax

λ

)3

−
(
ax

λ

)
+

1

4

}
. (4.8)

This expression is still exact. But asλ→ 0 (in the sense, explained earlier, thatλ/a � 1),
we can extend the integration down tox = 0, since the difference vanishes withλ. To see this,
note thatG(0) = 1, whence∫ λ/2a

0
dx G(x)

(
ax

λ

)4

∼
(
a

λ

)4 1

5

(
λ

2a

)5

∼ λ

a
→ 0

and similarly for the other terms within the braces in (4.8). Accordingly

12 = 1

24π2a

∫ ∞
0

dx G2(x)

{
−4

(
ax

λ

)4

+ 4

(
ax

λ

)3

−
(
ax

λ

)
+

1

4

}
(4.9)

which integrates to

12 = 1

24π2a

{
−4

(
a

λ

)4 3π

32
+ 4

(
a

λ

)3 3

20
−
(
a

λ

)
1

10
+

1

4

3π

32

}
,

γ 212 ≡ γ 212(scalar) = γ 2

{
− 1

64π

a3

λ4
+

1

40π2

a2

λ3
− 1

240π2

1

λ
+

1

1024π

1

a

}
. (4.10)

In terms of volumeV = 4πa3/3, surfaceS = 4πa2, and radiusa this reads

γ 212(scalar) = γ 2

{
− 3

256π2

V

λ4
+

1

160π3

S

λ3
− 1

240π2

1

λ
+

1

1024π

1

a

}
. (4.11)

The analogous expression for the Maxwell field is found in appendix B:

γ 212(em) = γ 2

{
− 3

128π2

V

λ4
+

7

360π3

S

λ3
− 1

20π2

1

λ
+

23

1536π

1

a

}
. (4.12)

† It is reassuring to verify thatf = 1 gives J = (4πa3/3)2, and thatf = 1/2ρ = 1/4aσ gives J =
(4πa3/3)2(3/5a), the correct Coulomb energy for a uniformly charged sphere with unit charge density.
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5. Comments

• The leading (most divergent) terms of theγ 212 are proportional toV . They combine
naturally with the first-order shifts; thus

1(scalar) = − V
λ4

{
3γ

4π2
+

3γ 2

256π2
+ · · ·

}
+ (less divergent terms).

This may be compared with the expressionV (uk − uvac) constructed from the energy
densities of unbounded regions, whose expansion is given by (3.2) as

V (uk − uvac) = − V
λ4

(
3γ

4π2
+

3γ 2

16π2
+ · · ·

)
.

ThusV (uk − uvac) coincides with theV/λ4-proportional part of the true shift1(scalar)
to orderγ but not to orderγ 2. Although the difference may surprise at first sight, no
theorem says that it must vanish.
• There is a positive surface energy.
• For many purposes the components of1 proportional toV and toS would be combined

with other contributions to the bulk and to the surface energies of the material, and play
no further role if one uses the measured values. The last bullet below reverts to this point.
• There is no component proportional toγ 2a/λ2, such as might have arisen from multiplying
S with the curvature.
• The third term in (4.11), (4.12) is independent of the radius, while the fourth appears to

diverge asa → 0. This seems paradoxical, because if there is no sphere (a = 0), then
there ought to be no energy shift. But there is no real contradiction: to derive the12 we
have assumedλ� a, and this assumption fails asa→ 0.
• The numerical coefficients of the terms featuringλ evidently depend on the kind of cut-

off one has chosen. Therefore, as between results from different regularization methods,
all that it makes sense to compare is the presence or absence of components with given
powers of 1/λ; the signs of these divergent components; and the finite term independent
of λ, call it1∗. For calculations that sidestep divergences without ever identifying them,
only1∗ can serve as a check. Butdiscrepancies regarding1∗ inevitably diagnose either
errors in the calculation or a basic lack of mathematical definition in the problem. Our
last bullet elaborates this too.
• As a second-order perturbation of the ground-state energy,γ 212 must be negative, as it is

in virtue of its dominantV -proportional component. But its finite component is positive:

γ 21∗2(scalar) = γ 2/1024πa, γ 21∗2(em) = 23γ 2/1536πa. (5.1)

There are no such finite terms of orderγ .
• Summations of zero-point energieshave produced various expressions.

(a) Milton (1980), equation (44), gave1∗(em) = −γ 2/256a, differing from (5.1) in
sign and magnitude. (See also Milton (1996) equation (51); Milton and Ng (1997)
equation (7.6).)

(b) Brevik et al (1998) in their equation (3.5) gave1∗(em) = (
γ 2/a

)
3/1024, up

to higher orders inγ . Compare their coefficient 3/1024 = 0.002 93 with our
23/1536π = 0.004 766: their approximations have produced the right sign and
order of magnitude, but not quite the right number.

(c) As regards the divergent components, Milton and Ng (1997) appear to ignore volume-
proportional terms, but their equation (7.10) gives a surface term as−γ 2a2/256λ3,
where we have substituted our 1/λ for their frequency cut-offω0. Here too sign
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and magnitude differ from the second term of our result (4.12), which yields
7γ 2a2/90π2λ3.

(d) In a recent preprint, Brevik and Marachevsky (1998) correct some earlier oversights,
and estimate†1∗(em) = (γ 2/a

)
C, with 0.004 03< C < 0.004 85, compatibly with

C = 0.004 766 from (5.1).
(e) Brevik et al (1998), correcting (a), give1∗(em) = (

γ 2/a
)
C with C = 0.004 767

calculated numerically, an excellent approximation to (5.1).

• As regards divergence or convergence with vanishingλ, one might perhaps formulate
an optimistic yet not totally absurd conjecture as follows. It should be read in the light of
the caution already voiced in section 1.

(i) Since divergences stem from high wavenumbers, they pertain, loosely speaking, to
physics at small distances: for instance, equation (C.2) in appendix C interpretsγ 212

in terms of a pairwise potential between polarizable volume elements separated byρ,
which only the finite value ofλprevents from diverging nonintegrably as‡ρ → 0. But
the true potential forρ � λ is governed by the direct electrostatic couplings between
molecules and/or charge carriers. Better models would supply explicit Hamiltonians
for such short-distance physics, and would also describe the coupling to the quantized
field more realistically than do our1H .

(ii) Short of such input, our kind of problem necessarily runs into a dilemma allied to
a paradox. By tradition, ‘Casimir effects’ denotemacroscopicforces and energy
shifts; yet for connected bodies the macroscopic must be matched tomicroscopic
physics, and no purely macroscopic model can be guaranteed in advance to reproduce
the results of this matching adequately for whatever purpose is in hand. One faces
questions reminiscent of those that for atoms are answered pretty informatively by
the so-called nonrelativistic (Bethe) theory of the Lamb shift. Answers to these
questions would tell us, for instance, whetherall divergent terms can be absorbed
by renormalizing material properties, or whether this is possible only for those
proportional toV or toS.

(iii) To escape from this dilemma, one can try introducing some vestigial microscopic
physics, say through model Hamiltonians for materials with a reasonably dispersive
dielectric response. Only calculation reveals whether in any particular model the
parameters specifying the dispersion allow one to dispense with cut-offs altogether.
However, it seems to be widely if tacitly expected that in a reasonably wide class
of models they do; and also that one will then be able to identify certain dispersion-
independent terms common to all such models. If so, then the finite contributions1∗

found in this paper determine these common terms to orderγ 2.

Appendix A. The double integral over the ball

Equation (4.6) requires an integral of the type

J ≡
∫
r<a

∫
r ′<a

d3r d3r ′f (ρ) = 1
8

∫
d3ρ f (ρ)

∫
d3R

with ρ,R defined by (4.3), whencer = (R + ρ)/2, r′ = (R − ρ)/2. The problem is to
determine the ranges of the new integration variables. Letθ be the angle betweenR andρ;

† Their equation (30) estimates the nondispersive surface forceF , which they link to the energy throughγ1∗ =
4πa3F (private communication from Professor Brevik). Recall that to leading order(n− 1) = γ /2.
‡ Cut-offs are required only for connected bodies: the mutual Casimir energy of two disconnected bodies needs none.
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then (
r2, r ′2

) = (R2 + ρ2 ± 2Rρ cosθ
)
/46 a2.

Since both conditions apply, we impose the more stringent, replacing± cosθ by | cosθ | ≡ µ,
with 0 6 µ 6 1. In terms of the scaled coordinatesS = R/2a, σ = ρ/2a (whence
06 S, σ 6 1) this leads to

S2 + 2σµS − (1− σ 2) < 0

which holds betweenS = 0 and the root

S1 = −σµ +
√

1− σ 2 + σ 2µ2.

Accordingly

J = 1
8(2a)

64π
∫ 1

0
dσ σ 2f 4π

∫ 1

0
dµ
∫ S1

0
dS S2

= (2a)6(4π)2

8× 3

∫ 1

0
dσ σ 2f

∫ 1

0
dµ
{√

1− σ 2 + σ 2µ2 − σµ}3
. (A.1)

On evaluating
∫

dµ . . . this yields (4.7).

Appendix B. The Maxwell field

In vacuothe plane-wave expansion of the transverse electric displacement in the Coulomb
gauge(∇ ·A = 0,E = D = −Ȧ) reads

D = i
∑
s=1,2

∫
d3k

k1/2

4π3/2
εks exp(ik · r)aks + H.c.

and the interaction† with the ball is

1H = − 1
2γ

∫
r<a

d3rD2(r). (B.1)

The polarization vectors are taken as real, with

εksεks ′ = δss ′ , kεks = 0,
∑
s

εksiεksj = δij − kikj /k2.

To first order inγ each polarization(s = 1, 2) contributes as for a scalar field, so that
11(em)= 211(scalar).

To second order inγ , one finds for12(em) an expression obtainable from (4.2) by replacing

K(scalar)≡
{∫

d3k k exp[ik · ρ− ξk]
}2

→

K(em) ≡
∫∫

d3k d3k′ kk′ exp[−ξ(k + k′)] exp[i(k + k′) · ρ]
∑
s

∑
s ′
(εks .εk′s ′)

2.

Now, using the dummy suffix convention,∑
s

∑
s ′
(εks .εk′s ′)

2 = (δij − kikj /k2
)(
δij − k′ik′j /k′2

) = 1 +
(
kikj /k

2
)(
k′ik
′
j /k
′2) (B.2)

† In the Coulomb gauge the longitudinal components of the field are not quantized: they stem from the fluctuations
of the atomic dipoles, and are responsible for the Van der Waals contributions to the self-energy.
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making it convenient to define the symmetric tensor

Mij ≡
∫

d3k k
kikj

k2
exp[−ξk + ik · ρ] = 8π

{
δij (ξ

2 + ρ2)− ρiρj
(ξ2 + ρ2)3

}
. (B.3)

Thus

K(em) = M2
ii +MijMij . (B.4)

Evidently

K(scalar)= M2
ii =

(8π)2
(
3ξ2 − ρ2

)2
(ξ2 + ρ2)6

= (8π)2

ρ8

(
3x2 − 1

)2
(x2 + 1)6

= (8π)2

ρ8
G(x) (B.5)

with x = ξ/ρ as in (4.4). The second term of (B.4) is

MijMij = (8π)2

ρ8

(3x4 − 2x2 + 11)

(x2 + 1)6
. (B.6)

Combining the two terms in (B.4) we find

K(em) = (8π)2

ρ8
Gem(x), Gem(x) ≡ 12x4 − 8x2 + 12

(x2 + 1)6
. (B.7)

Thus the electromagnetic are obtained from the scalar expressions simply by replacing
G(x) = (3x2 − 1)2/(x2 + 1)6 with Gem(x). Doing so in (4.9) yields

12(em) = 1

24π2a

∫ ∞
0

dx Gem(x)

{
−4

(
ax

λ

)4

+ 4

(
ax

λ

)3

−
(
ax

λ

)
+

1

4

}
;

this integrates to

12(em) = 1

24π2a

{
−4

(
a

λ

)4 3π

16
+ 4

(
a

λ

)3 7

15
−
(
a

λ

)
6

5
+

1

4
· 23π

16

}
which leads to (4.12).

Appendix C. The Casimir–Polder connection

In hindsight, equation (4.6) adapted to the Maxwell field may be rearranged to yield

γ 212 = − 1
2

∫
r<a

∫
r ′<a

(
γ d3r

4π

)(
γ d3r ′

4π

)
1

ρ7

4

π2

∫ ∞
λ/ρ

dx Gem(x). (C.1)

But γ d3r/4π ≡ dα is just the (static) polarizability† of the volume element d3r containing
our dilute dielectric withε = 1 + γ + · · · . Thus (C.1) may be interpreted as asserting that
between two objects with polarizabilities dα and dα′ a distanceρ apart, there acts an attractive
potential

dα dα′ U(ρ), U(ρ) ≡ − 1

ρ7

4

π2

∫ ∞
λ/ρ

dx Gem(x). (C.2)

† We define polarizability so that in volume dV an electric fieldE induces a dipole moment dP = E dV (ε−1)/4π =
E dα. The old-fashioned 4π here conforms to the definition of molecular polarizabilitiesα featured in the standard
expression for the Casimir–Polder potential.
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As ρ/λ→∞ the lower limit may be replaced by zero, and

4

π2

∫ ∞
0

dx Gem(x) = 4

π2
· 23π

16
= 23

4π
(C.3)

reduces (C.2) to the familiar Casimir–Polder (retarded) potential−23dα dα′/4πρ7. By
contrast,U(ρ/λ→ 0) = −48/7π2λ7. The preamble to section 4 explained thatλ should be
of the order of the typical absorption wavelengths, and much larger than the intermolecular
spacing. Forρ � λ the retarded potential (C.2) is therefore swamped by the (electrostatic) Van
der Waals interactions†, of order−dα dα′/4πλρ6, whose contributions to the total binding far
outweighγ 212.

The energy shift calculable directly from two-body Casimir–Polder potentials (rather
than by summing zero-point energies) has already been considered by Milton and Ng (1998).
Using dimensional continuation, and disregarding divergent parts, they extract a finite shift,
their equation (3.17), which coincides exactly withγ1∗2(em) in (5.1).

Appendix D. The net pressure on a thin spherical shell

Equations (C.1) and (C.2) can be applied to a thin spherical shell of radiusa and thickness
δa. For simplicity we idealize by takingδa � λ � a, as if the electromagnetic interaction-
Hamiltonian density were−0δ(r−a)D2/2, with0 ≡ γ δa treated as a single input parameter
in its own right. Then to order02 the net outward pressure (force per unit area), call itP ,
can be determined directly from the pairwise intervolume forces, evidently proportional to
F(ρ) ≡ −∂U/∂ρ. (The first-order shiftγ11 is manifestly irrelevant, depending as it does
only on the total volume of the material. Several other distractions too are sidestepped by
calculatingP directly rather than through the energy.)

We omit the details; in the integration over the surface one changes the variable from polar
angle toρ, and finds

P(em) =
(
0

4π

)2
π

a

∫ 2a

0
dρ ρ2F(ρ) = −

(
0

4π

)2
π

a

{
(2a)2U(2a)− 2

∫ 2a

0
dρ ρU(ρ)

}
=
(
0

4π

)2 4

πa

(
1

2a

)5 ∫ ∞
0

dx Gem (x)
1

5

{
−2

(
2ax

λ

)5

+ 7

}
+ (terms vanishing withλ),

P (em) =
(
0

4π

)2 1

a6

{
− 48

25π

(
a

λ

)5

+
161

640

}
. (D.1)

Concentrating all the material into an infinitesimally thin shell has aggravated the
divergence to(a/λ)5; finite thickness would produce nothing worse than the(a/λ)4

encountered for solid spheres.
Since the forces are attractive,P must be negative, as it is in virtue of its dominant

(divergent) component: the shell tends to collapse. On the other hand, the finite term is
positive. If one accepts the optimistic conjecture at the end of section 5, whereby a proper
calculation would absorball divergent components through renormalizations of the various
material properties of the medium, then from the Casimir scene the first (the attractive) term
in (D.1) might vanish; and the second (the repulsive) term might turn out to be the correct
adaptation, to our feebly polarizable shell, of Boyer’s classic result for a perfectly reflecting

† Formally, our Hamiltonian (B.1) admits these dominant contributions through the unquantized longitudinal
components ofD.
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shell, namely that it too experiences a net outward pressure on account purely of the quantized
Maxwell field. (For references and a very clear discussion see Bowers and Hagen (1998).) In
that case there would exist a well defined interpolating functionP(em, a, 0), such that

P(em, a, 0→ 0) = 161

640

(
0

4π

)2 1

a6
, P (em, a, 0→∞) = 0.092 35

8πa4
(?)

where the rightmost expression quotes from Boyer (1968).
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